The generator matrix
1 0 0 0 1 1 1 X 1 1 0 1 1 0 X 1 1 1 0 X X 0 1 1 1 X 0 0 X X 1 0 0 0 1 0 1 X X 0 X 1 1 0 1 1 X 1 X 1 X 1 1 1 0 1 1 0 1 0 X 1 1 1 X X 1 1 1 1
0 1 0 0 0 0 0 0 1 1 1 1 X+1 1 1 X 0 1 X 0 1 1 X 1 X+1 1 0 X 1 X 1 1 X X X 1 0 1 1 0 1 1 0 1 1 1 1 X X X+1 0 1 1 0 1 1 X+1 X X 1 1 X X 1 1 1 0 0 X+1 X
0 0 1 0 0 1 X+1 1 X+1 1 X 0 0 1 1 X 0 X+1 1 X 1 X X+1 0 1 X 1 1 X+1 0 X X 1 X 1 X 0 X+1 1 1 0 X+1 X 1 0 0 1 X+1 1 0 1 X X X 1 1 X 0 1 X+1 1 0 1 X+1 X+1 X+1 1 X+1 0 X
0 0 0 1 1 1 0 1 X X+1 1 1 0 X+1 0 0 X+1 X 0 1 X+1 X 0 0 X+1 1 1 X 0 1 X 0 X+1 1 X X X+1 X+1 0 X X+1 1 0 X+1 X+1 X+1 0 X+1 X+1 X 1 1 X+1 0 0 X X 1 X+1 X X 0 X X+1 0 1 1 0 X+1 X+1
0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X 0 X X X 0 0 0 0 X 0 X X 0 X 0 X X X X 0 X 0 X X X 0 X X X X X 0 X X X 0 0 X X 0 0 X 0 X 0
0 0 0 0 0 X X 0 X X 0 X X 0 0 X X 0 X X X X 0 0 0 X 0 0 0 X 0 X X 0 X 0 0 X 0 X 0 X 0 0 0 X X 0 0 X X 0 0 X X X X 0 X X X X 0 X 0 X 0 0 0 0
generates a code of length 70 over Z2[X]/(X^2) who´s minimum homogenous weight is 64.
Homogenous weight enumerator: w(x)=1x^0+241x^64+388x^68+175x^72+120x^76+48x^80+44x^84+7x^88
The gray image is a linear code over GF(2) with n=140, k=10 and d=64.
This code was found by Heurico 1.16 in 9.84 seconds.